Directions: Show all work. Box final answers.

1) Strong Acid Solution - assume full dissociation

Calculate the pH of $0.00125 \mathrm{M} \mathrm{HNO}_{3} \underline{2.903}$
>> Determine $\left[\mathrm{H}^{+}\right]$and then the pH .
3) Weak Acid Solution - does not fully dissociate

Calculate the pH of 0.00125 M HOCl 5.18
$\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$
\gg Determine $\left[H^{+}\right]$using an ICE table, then calculate the pH .
2) Strong Base Solution - assume full dissociation

Calculate the pH of $0.00125 \mathrm{M} \mathrm{KOH} \quad 11.097$
>> Determine $[\mathrm{OH}-]$, calculate pOH , and then calculate the pH .
4) Weak Base Solution - does not fully dissociate Calculate the pH of $0.00125 \mathrm{M} \mathrm{NH}_{3} \underline{10.15}$
$\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
>> Determine $[\mathrm{OH}]$ using an ICE table, calculate the pOH , then calculate the pH .
5) Salt of a Weak Acid - have to consider hydrolysis

Calculate the pH of $0.00125 \mathrm{M} \mathrm{NaOCl} \underline{9.28}$
$\mathrm{K}_{\mathrm{a}} \mathrm{HOCl}=3.5 \times 10^{-8}$
>> Write hydrolysis, calculate Kb, determine [OH] using an ICE table, calculate the pOH , then calculate the pH .
6) Salt of a Weak Base - have to consider hydrolysis

Calculate the pH of $0.00125 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl} \underline{6.08}$
$\mathrm{K}_{\mathrm{b}} \mathrm{NH} 3=1.8 \times 10^{-5}$
>> Write hydrolysis, calculate Ka, determine [H^{+}] using an ICE table, then calculate the pH .
7) Diprotic Acid Solution $-1^{\text {st }}$ is strong, $2^{\text {nd }}$ is weak Calculate the pH of $0.00125 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3} \underline{4.64}$ $\mathrm{K}_{\mathrm{a} 1}=4.2 \times 10^{-7} \quad \mathrm{~K}_{\mathrm{a} 2}=4.8 \times 10^{-11}$
>> Assume all $\left[\mathrm{H}^{+}\right]$dissociate from $1^{\text {st }}$ ionization, determine $[\mathrm{H}+]$ using an ICE table, then calculate pH .
8) Mixture of Acid and Base - neutralize then see excess Calculate the pH of 20.0 mL of $0.00125 \mathrm{M} \mathrm{HNO}_{3}$ added to 30.0 mL of $0.00125 \mathrm{M} \mathrm{KOH} \underline{10.398}$ $\mathrm{K}_{\mathrm{a} 1}=4.2 \times 10^{-7} \quad \mathrm{~K}_{\mathrm{a} 2}=4.8 \times 10^{-11}$
>> Determine the moles of excess $\mathrm{H}+$ or OH -taking into account the balanced chemical equation, determine the total volume of the mixture, calculate the $[\mathrm{H}+]$ or [$\mathrm{OH}-]$ based on the excess that was left after neutralization, then calculate the final pH .

